32 research outputs found

    Inclusive Displaced Vertex Searches for Heavy Neutral Leptons at the LHC

    Full text link
    The inclusion of heavy neutral leptons to the Standard Model particle content could provide solutions to many open questions in particle physics and cosmology. The modification of the charged and neutral currents from active-sterile mixing of neutral leptons can provide novel signatures in Standard Model processes. We revisit the displaced vertex signature that could occur in collisions at the LHC via the decay of heavy neutral leptons with masses of a few GeV emphasizing the implications of flavor, kinematics, inclusive production and number of these extra neutral fermions. We study in particular the implication on the parameter space sensitivity when all mixings to active flavors are taken into account. We also discuss alternative cases where the new particles are produced in a boosted regime.Comment: 24 pages, 10 figures. Extended analysis. Published versio

    Flavor Techniques for LFV Processes: Higgs Decays in a General Seesaw Model

    Full text link
    Lepton flavor violating processes are optimal observables to test new physics, since they are forbidden in the Standard Model while they may be generated in new theories. The usual approach to these processes is to perform the computations in the physical basis; nevertheless this may lose track of the dependence on some of the fundamental parameters, in particular on those at the origin of the flavor violation. Consequently, in order to obtain analytical expressions directly in terms of these parameters, flavor techniques are often preferred. In this work, we focus on the mass insertion approximation technique, which works with the interaction states instead of the physical ones, and provides diagrammatic expansions of the observables. After reviewing the basics of this technique with two simple examples, we apply it to the lepton flavor violating Higgs decays in the framework of a general type-I seesaw model with an arbitrary number of right-handed neutrinos. We derive an effective vertex valid to compute these observables when the right-handed neutrino masses are above the electroweak scale and show that we recover previous results obtained for low scale seesaws. Finally, we apply current constraints on the model to conclude on maximum Higgs decay rates, which unfortunately are far from current experimental sensitivitiesThis work was supported by the European Union through the ITN ELUSIVES H2020-MSCA-ITN-2015//674896 and the RISE INVISIBLESPLUS H2020-MSCA-RISE-2015//690575, by the CICYT through the project FPA2016-78645-P, and by the Spanish MINECO's Centro de Excelencia Severo Ochoa Programme under grant SEV-2016-059

    Lepton flavor violation from low scale seesaw neutrinos with masses reachable at the LHC

    Full text link
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física Teórica. Fecha de lectura: 22-09-201

    Beta and neutrinoless double beta decays with KeV sterile fermions

    Get PDF

    Search for Light Exotic Fermions in Double-Beta Decays

    Get PDF
    The Standard Model of Particle Physics predicts the double-β\beta decay of certain nuclei with the emission of two active neutrinos. In this letter, we argue that double-β\beta decay experiments could be used to probe models with light exotic fermions through the search for spectral distortions in the electron spectrum with respect to the Standard Model expectations. We consider two concrete examples: models with light sterile neutrinos, singly produced in the double-β\beta decay, and models with a light Z2Z_2-odd fermion, pair produced due to a Z2Z_2 symmetry. We estimate the discovery potential of a selection of double-β\beta decay experiments and find that future searches will test for the first time a new part of the parameter space of interest at the MeV-mass scale.Comment: 9 pages, 3 figures. Matches published versio

    HNL mass degeneracy: implications for low-scale seesaws, LNV at colliders and leptogenesis

    Full text link
    Low-scale seesaw variants protected by lepton number symmetry provide a natural explanation of the smallness of neutrino masses but, unlike their higher-scale counterparts, with potentially testable phenomenology. The approximate lepton number symmetry arranges the heavy neutrinos in pseudo-Dirac pairs, which might be accessible at collider or even beam dump experiments if their mass is low enough and their mixing with the active neutrinos sufficiently large. Despite their pseudo-Dirac nature, their small mass splittings may lead to oscillations that prevent the cancellation of their potential lepton-number-violating signals. Interestingly, these small splittings may also resonantly enhance the production of a lepton number asymmetry for low-scale leptogenesis scenarios or, for extremely degenerate states, lead to an asymmetry large enough to resonantly produce a keV sterile neutrino dark matter candidate with the correct relic abundance via the Shi-Fuller mechanism. In this work we explore the parameter space of the different low-scale seesaw mechanisms and study the size of these splittings, given their important and interesting phenomenological consequences. While all low-scale seesaw variants share the same dimension 5 and 6 operators when integrating out the heavy states, we point out that the mass splitting of the pseudo-Dirac pairs are very different in different realizations such as the inverse or linear seesaw. This different phenomenology could offer a way to discriminate between low-scale seesaw realizations.Comment: 27 pages, 6 figures. Matches published version in JHE

    Lepton flavor violation from diphoton effective interactions

    Full text link
    We consider charged lepton flavor violating transitions mediated by the diphoton effective interactions ℓiℓjγγ and explore which processes can probe them better. Our analysis includes single and double radiative decays, ℓi → ℓjγ(γ), as well as ℓi → ℓj conversions in nuclei for all possible flavor combinations, which we compute for the first time for ℓ → τ conversions in this framework. We find that currently the best limits are provided by the loop-induced ℓi → ℓjγ processes, while the best future sensitivities come from μ → e conversion in aluminum and from potential τ → ℓγγ searches at Belle II or at the Super Tau Charm Facility. We also motivate the search for μ → eγγ at the Mu3e experiment as a complementary probe of these operatorsCEX2020-001007-S, Horizon Europe Programme under the Marie Skłodowska-Curie Grant Agreement No. 101066105 PheNUmena

    Model-independent search strategy for the lepton-flavor-violating heavy Higgs boson decay to τμ at the LHC

    Get PDF
    In this work we present a model-independent search strategy at the LHC for heavy Higgs bosons decaying into a tau and a muon, H/ A→ τμ, showing a plausible tendency to improve the sensitivity obtained by the present experimental limits. This search strategy is performed for the Higgs boson mass range 1–5 TeV and uses as the most relevant kinematical variables, in order to discriminate signal against background, the transverse momenta of the muon and the tau together with the missing transverse energy. We estimate the exclusion limits at 95% CL and the significances for evidence and discovery at s = 14 TeV with L = 300 fb- 1, observing a growth in the sensitivities for high Higgs boson masses. Moreover, since the Higgs boson decay into a tau-lepton pair may mimic our LFV signal, we also study the impact of the ditau channel on the exclusion limits and the significances for evidence and discovery. In particular, the impact on the exclusion limits of LFV heavy Higgs boson decays is significant when the ditau rate begins to compete with the corresponding to the H/ A→ τμ decayThis work has been partially supported by CONICET and ANPCyT under projects PICT 2016-0164 (E. A., N. M., A. S.), PICT 2017-2751 (E. A., N. M., A. S.) and PICT 2017-2765 (E. A.). This work is supported by the European Union through the ITN ELUSIVES H2020-MSCA-ITN-2015//674896 and the RISE INVISIBLE-SPLUS H2020-MSCA-RISE-2015//690575, by the CICYT through the project FPA2016-78645-P, and by the Spanish MINECOs “Centro de Excelencia Severo Ochoa” Programme under Grant SEV-2016-059

    Bounds on lepton non-unitarity and heavy neutrino mixing

    Full text link
    We present an updated and improved global fit analysis of current flavor and electroweak precision observables to derive bounds on unitarity deviations of the leptonic mixing matrix and on the mixing of heavy neutrinos with the active flavours. This new analysis is motivated by new and updated experimental results on key observables such as VudV_{ud}, the invisible decay width of the ZZ boson and the WW boson mass. It also improves upon previous studies by considering the full correlations among the different observables and explicitly calibrating the test statistic, which may present significant deviations from a χ2\chi^2 distribution. The results are provided for three different Type-I seesaw scenarios: the minimal scenario with only two additional right-handed neutrinos, the next to minimal one with three extra neutrinos, and the most general one with an arbitrary number of heavy neutrinos that we parametrize via a generic deviation from a unitary leptonic mixing matrix. Additionally, we also analyze the case of generic deviations from unitarity of the leptonic mixing matrix, not necessarily induced by the presence of additional neutrinos. This last case relaxes some correlations among the parameters and is able to provide a better fit to the data. Nevertheless, inducing only leptonic unitarity deviations avoiding both the correlations implied by the right-handed neutrino extension as well as more strongly constrained operators is challenging and would imply significantly more complex UV completions.Comment: 27 pages + appendices, 7 figures, 7 table

    A method for approximating optimal statistical significances with machine-learned likelihoods

    Get PDF
    Machine-learning techniques have become fundamental in high-energy physics and, for new physics searches, it is crucial to know their performance in terms of experimental sensitivity, understood as the statistical significance of the signal-plus-background hypothesis over the background-only one. We present here a simple method that combines the power of current machine-learning techniques to face high-dimensional data with the likelihood-based inference tests used in traditional analyses, which allows us to estimate the sensitivity for both discovery and exclusion limits through a single parameter of interest, the signal strength. Based on supervised learning techniques, it can perform well also with high-dimensional data, when traditional techniques cannot. We apply the method to a toy model first, so we can explore its potential, and then to a LHC study of new physics particles in dijet final states. Considering as the optimal statistical significance the one we would obtain if the true generative functions were known, we show that our method provides a better approximation than the usual naive counting experimental results.Comment: 24 pages, 8 figures; matches version published in Eur. Phys. J.
    corecore